First experiments on a new online handwritten flowchart database

نویسندگان

  • Ahmad-Montaser Awal
  • Guihuan Feng
  • Harold Mouchère
  • Christian Viard-Gaudin
چکیده

We propose in this paper a new online handwritten flowchart database and perform some first experiments to have a baseline benchmark on this dataset. The collected database consists of 78 flowcharts labeled at the stroke and symbol levels. In addition, an isolated database of graphical and text symbols was extracted from these collected flowcharts. Then, we tackle the problem of online handwritten flowchart recognition from two different points of view. Firstly, we consider that flowcharts are correctly segmented, and we propose different classifiers to perform two tasks, text/non-text separation and graphical symbol recognition. Tested with the extracted isolated test database, we achieve up to 99% and 96% in text/non-text separation and up to 81.3% in graphical symbols recognition. Secondly, we propose a global approach to perform flowchart segmentation and recognition. For this latter, we adopt a global learning schema and a recognition architecture that considers a simultaneous segmentation and recognition. Global architecture is trained and tested directly with flowcharts. Results show the interest of such global approach, but regarding the complexity of flowchart segmentation problem, there is still lot of space to improve the global learning and recognition methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص دست‌نوشتۀ‌ برخط فارسی با استفاده از مدل زبانی و کاهش قوانین نگارش کاربر

The Joint-up, cursive form of Persian words and immense variety of its scripts, also different figures of Persian letters depending on their sitting positions in the words, have turned the Persian handwritings recognition to an intense challenge. The major obstacle of the most often recognition ways, is their inattention to sentence contexture which causes utilizing of a word with correct appea...

متن کامل

بازشناسی برخط حروف مجزای دست‌نویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان

In this paper a new method for the online recognition of handwritten Persian characters has been proposed which uses a set of simple features and Support Vector Machine (SVM) as a classifier. The task of preprocessing allows us to equalize feature vectors from different characters. This algorithm is implemented in two steps. In the first step, input character is classified into one of eighteen ...

متن کامل

Symbol detection in online handwritten graphics using Faster R-CNN

Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues...

متن کامل

Online Database of Quranic Handwritten Words

In this paper, an online Arabic handwritten words database is presented to be the first online Quranic handwritten words dataset. The dataset was collected naturally using Acer computer tablet 1.5 GHz core i3 by writing the words on a smooth touch screen using a special pen stylus. Here, a platform interface was designed to collect the handwritten words using Matlab environment. Handwritten wor...

متن کامل

A New Multipurpose Comprehensive Database for Handwritten Dari Recognition

In this paper, we present the creation of the first comprehensive database for research and development on handwritten recognition of Dari language. This new handwritten database consists of many aspects of Dari scripts such as: handwritten isolated characters, isolated digits, numeral strings of various lengths, many words/terms, dates, and some special symbols. For each handwritten image in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011